
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Towards Trustable Embedded Systems: Hardware Threat Modeling for

Integrated Circuits

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

As integrated circuits become more complex, it becomes easier to hide malicious logic constructs within a design.

Security-conscious hardware designers require a way to detect such logic embedded in Third Party IP blocks used by their

designs. The aim of this project was to develop a systematic way to detect attacks implemented in a design. Using the Java

programming language, a tool capable of producing an attacker-centric threat model was developed. The tool uses a library of

predefined malicious patterns to detect and categorize attacks in a system. Upon completion, the tool was tested on a small

RISC microprocessor containing denial of service and data tampering attacks. Once given the appropriate library pattern, the

U

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

28-10-2008

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

embedded system security

Jia Di

University of Arkansas

Board of Trustees

University of Arkansas

Fayetteville, AR 72701 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

U U

c. THIS PAGE

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

SAR

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-07-1-0648

611102

Form Approved OMB NO. 0704-0188

53318-CI-II.1

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Jia Di

479-575-5728

3. DATES COVERED (From - To)

1-Jan-2008

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 30-Sep-2008

Towards Trustable Embedded Systems: Hardware Threat Modeling for Integrated Circuits

Report Title

ABSTRACT

As integrated circuits become more complex, it becomes easier to hide malicious logic constructs within a design. Security-conscious

hardware designers require a way to detect such logic embedded in Third Party IP blocks used by their designs. The aim of this project was

to develop a systematic way to detect attacks implemented in a design. Using the Java programming language, a tool capable of producing

an attacker-centric threat model was developed. The tool uses a library of predefined malicious patterns to detect and categorize attacks in a

system. Upon completion, the tool was tested on a small RISC microprocessor containing denial of service and data tampering attacks. Once

given the appropriate library pattern, the tool was able to detect both threats in the design.

(a) Papers published in peer-reviewed journals (N/A for none)

List of papers submitted or published that acknowledge ARO support during this reporting

period. List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 0.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

 0.00

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Number of Manuscripts: 0.00

Number of Inventions:

Graduate Students

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Jia Di 0.16 No

 0.16FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

Michael Hinds 0.50

Jordan Yust 0.50

Wiwat Leebhaisomboon 0.50

Michael Linder 0.50

Chris Porter 0.50

Jeremy Choens 0.50

 3.00FTE Equivalent:

 6Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 5.00

 5.00

 4.00

 0.00

 4.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 5.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

The Trustable Recognition of Undesired Threats in Hardware
(TRUTH) Analysis Tool – An Approach to Hardware Threat

Modeling

D.1 Introduction

The impact of software viruses has been felt by the entire computerized world,
through loss of productivity, loss of system resources or data, or mere inconvenience on a
massive scale. Hardware, especially integrated circuits (ICs), was considered safe and
attack-free, in contrast to its software counterpart. However, as technologies advance and
markets expand, hardware is becoming vulnerable like software. Malicious logic, similar
to a software virus, could be inserted into a circuit like a Trojan horse, such that it lies
dormant and is very difficult to detect until activated, but then cannot be effectively
defeated. These days most complex digital systems are not designed from scratch;
instead they use many Third Party Intellectual Property (IP) blocks. Hence, one or more
Third Party IP blocks could contain malicious logic that may affect the entire system. The
inserted malicious logic can lead to various unwanted scenarios that threaten the three
key aspects of information security: Availability (Denial-of-Service), Confidentiality
(Information Leakage), and Integrity (Data Tampering). These hardware threats must be
identified and the corresponding attacks must be mitigated to ensure that the IC is
trustable, i.e., only performs functions defined in the original circuit specification (no
more and no less), before applications employing these chips are placed into operation.
Note that the aims of malicious logic attackers are beyond profit-seeking; they also
include issues that may affect national security.

D.1.1 Approach
Threat modeling is a method of assessing and documenting the security risks

associated with an application. A fundamental component of any formal analysis of
security properties, including those for hardware, is to construct an appropriate threat
model for the environment in which the system is designed to be working. It is essential
to ensure the threat model is neither too weak nor too strong: if too weak, the system may
pass the check but may not be safe in field operation; if too strong, unnecessary design
constraints may be posed to the designers.

The key to effective threat modeling is to efficiently and systematically check for
inserted malicious logic in an IC. Once an effective method has been implemented, one
can proceed in developing a more trustable IC. The malicious-logic checking
mechanisms needed for such a method can be classified into two categories: attacker-
centric and defender-centric. For this project, the Trustable Recognition of Undesired
Threats in Hardware (TRUTH) Analysis Tool utilized attacker-centric checking
mechanisms in its approach towards threat modeling.

Software-based attacker-centric checking mechanisms are separate from the
design effort, and search the entire circuit structure after the design is complete.
Therefore, no additional circuitry is added to the original design. The attacker-centric
checking mechanism used in the TRUTH Analysis Tool is a variation of the mechanism
known as Structural Checking [1]. Structural Checking focuses on circuit structure as
opposed to functionality – it searches the IC circuit structure for potential malicious logic

after the design is complete. It is most effective for the following types of malicious
logic:

• Malicious logic targeting signals having multiple sources and destinations – these
signals are also called “traceable” signals, whose sources and destinations can be
easily traced by inspecting the IC’s bi-directional linked-list. Examples of such
signals include clock tree, busses, RESET signal, interrupt signal, primary inputs
and outputs;

• Malicious logic targeting combinational circuits with a reasonable number of I/O
ports – the malicious logic inside a combinational circuit is activated by the
circuit inputs and propagates its effect to the outputs. Therefore, Structural
Checking can either start from the output lines and “trace back” into the circuit to
check the circuit blocks controlling these outputs, or from the input lines to search
for the circuit blocks being controlled by these inputs. To reduce complexity, the
number of circuit inputs/outputs cannot be too many;

• Malicious logic targeting small combinational circuits – for small combinational
circuits, even if they have many input/output ports, Structural Checking is still
applicable since the total circuit complexity is low.

The TRUTH Analysis Tool utilizes the Structural Checking attacker-centric
checking mechanism in its approach to threat modeling. An in-depth analysis of how the
Tool uses this checking mechanism is presented in the sections that follow.

The Structural Checking approach is applicable to all levels of abstraction, from
RTL description to physical layout. However, application to transistor-level or physical-
level netlists is more difficult than RTL or gate-level netlists, because of greater difficulty
in identifying logic constructs at these lower levels of abstraction. For this reason, the
TRUTH Analysis Tool performs threat modeling only at the RTL level.

D.2 Functionality
D.2.1 Overview

The objective of the TRUTH Analysis Tool is to perform threat modeling on an
IC design accurately and efficiently at the RTL level of abstraction. Given the design
layout and information provided by the user, the Tool analyzes the circuit design for
likely attacks. It then provides a list of these attacks to the user to allow for further
inspection of the locations in the circuit where the attacks occur. When in the process of
analyzing a circuit for attacks (so-named “risk analysis”), there is a tradeoff between the
thoroughness of the analysis and the resources needed to conduct such an analysis. A
more thorough analysis can only be conducted at the expense of computation time and
resources. For this reason, the Tool attempts to optimize the tradeoff and maximize the
effectiveness of the resources used.

D.2.2 Tool Structure
The TRUTH Analysis Tool takes a step-by-step approach to performing threat

modeling on an IC. Throughout each step, the Tool acquires the attributes necessary to
effectively analyze the IC for possible attacks.

The Threat Model, denoted as M, of a target IC, can be defined as
. S is the internal circuit structure of the target IC, and P represents },,,,,{ KTACPSM =

Information Layer Security Layer

Circuit Structure

Figure 1: TRUTH Analysis Tool

Application
Risk Analysis

Assets

Third Party IP Blocks
Threat Library

Attacks

the intended application.],1[, niCci ∈∈
represents each Third Party Intellectual
Property (IP) block, where n is the total number of Third Party
IP blocks, and is each
asset of the target IC, where m is the total
number of assets. T is the library of threat patterns used
to analyze the circuit and K is the set of
corresponding attacks that result after
conducting risk analysis.

],1[m∈, jAa j ∈

D.2.3 Creating the Circuit Structure
As stated, the TRUTH Analysis Tool accounts for circuits represented by an RTL

description, which is the most abstract level of design. This type of description is written
in VHDL (VHSIC Hardware Description Language). The VHDL parser written by Dr.
Christoph Grim, et. al., provides a framework that translates the IEEE 1076 standard
(Design Automation Standards Committee of the IEEE Computer Society) into Java code
[2]. Using object-oriented programming in Java, the parser has been highly modified in
order to build the internal circuit structure S needed for threat modeling. Upon reading in
a VHDL file, the parser creates a representation of the file in memory. It then recognizes
specific attributes about the file that allows certain automated operations necessary for
risk analysis to be performed. These operations include tracing data paths, recognizing
functional blocks and memory elements, and determining points at which signals are
modified.

The attributes recognized by the parser are shown in Figure 2 and are the following:

• Signals - the term “signal”, in this context, represents a connection between two
or more digital components. Each signal is either a port signal or an intra-signal.
Port signals (also known as I/O signals) connect from outside the circuit to one or
more of the circuit's subcomponents. Each port signal has a “mode” characteristic
that represents how data flows through that signal (e.g., IN, OUT, etc.). Intra-
signals, on the other hand, represent the circuit's internal wires connecting two or
more subcomponents together. All intra-signals have a “mode” characteristic of
SIGNAL, meaning their data flow does not have a defined direction.

• Process blocks – a process block is a logic block typically used to build sequential
circuits. These circuits act only when certain signals change their value, which
are listed in the process block's sensitivity list. The parser treats a process block as
a subcomponent where signals accessed by that process (in the sensitivity list or
inside the block) are connections to the rest of the circuit. In other words, the
parser determines which of the circuit's port and intra-signals are accessed from a
process block and then generates a list of those signals for that process block.

VHDL
File

Entity Name

VHDL
Parser

Intra-Signals
(internal)

Signal
1

Signal
n

Signal
2

Port Signals
(I/O)

Signal
1

Signal
n

Signal
2

.....

Process 1 Name

Sensitivity List

Signals Used
(inside Process

block)
Signal
Signal
Signal

Signal
Signal
Signal

Process 2 Name

Sensitivity List

Signals Used
(inside Process

block)
Signal
Signal
Signal

Signal
Signal
Signal

Instance 1

Port Map List
Signal
Signal
Signal

Attributes

.....

Processes Instances

CC Assignment 1

Concurrent
Assignments

Instantiated
Entity

Instance 2

Port Map List
Signal
Signal
Signal

Instantiated
Entity

Signal
Signal
Signal

CC Assignment 2
Signal
Signal
Signal

Signal
- name

- mode (IN, OUT, etc.)

- type (STD_LOGIC, etc.)

- etc.

Figure 2: Attributes of a circuit recognized by the VHDL parser.

• Concurrent assignments – concurrent assignments are logical operations
performed simultaneously and continuously inside a circuit as opposed to
sequentially. These assignments are defined inside the circuit’s architecture and
outside process blocks. The parser represents each concurrent assignment as a
sequence of signals, operations, and literals (e.g., ‘1’, “000”, X”ABCD0123”,
etc.) verbatim as it appears in the statement.

• Subcomponents (Instances) – when a VHDL file is parsed, its subcomponents are
instantiated as instances and the VHDL files corresponding to those instances are
placed into a queue to be parsed next. This is necessary in order for the circuit
structure S to properly represent the actual circuit design.

Most circuit designs are implemented in a hierarchy of sub-circuit designs, each
of which is coded in a separate VHDL file. In order to preserve this hierarchy, a depth
first approach is used to create a logical representation of the design in memory. To
begin creating the circuit structure, the top-level design file is read in by the parser.
As the file is being parsed, its subcomponents are instantiated as instances and the VHDL
files corresponding to those instances are then parsed. This recursion continues until the
parser reaches a file that has no subcomponents. After each file of the design has been

parsed, connections between each file (signals) are organized so that data paths can be
followed. The structure mirrors that of the actual VHDL hierarchy representation used to
create the circuit design.

D.2.4 Specifying the Application
ICs can have multiple intended applications at the same time, ranging from

aircraft control to data encryption. For each application of an IC, an attacker’s goals are
likely to change. Therefore, when identifying threats, one needs to ask: what is the
primary use of this IC? The Tool provides a list of applications separated into categories
to choose from. The user is to select the application that best describes the primary use of
the target IC. Included in each application is its own set of “threat levels”. Since the ease
and severity of accomplishing the three types of threats (Denial-of-Service, Information
Leakage, and Data Tampering) is dependent on the nature of the application, certain
threats are easier to implement and cause more damage in some applications compared to
others. For this reason, each application is given a rating (threat level) for each threat.
The rating ranges from 0 to 10, with 10 being the most severe, and combines the
likelihood of implementing the threat with the severity it would cause into an integer
value. For example, an IC associated with handling the results of a voting machine
would have a very high Data Tampering threat level due to the repercussions that would
ensue if the machine were successfully compromised. The threat levels from the chosen
application are then taken into account when conducting risk analysis.

D.2.5 Determining Third Party IP blocks
Most complex ICs today are not developed solely by the user. Instead, most ICs

include 3rd party Intellectual Property (IP) blocks in their implementation. Since these IP
blocks did not originate from the user, one or more could contain malicious logic that
may affect the entire system. Therefore, it is important to distinguish between blocks in
the circuit design that are trustable as opposed to those that are not trustable.

The TRUTH Analysis Tool requires this specification. Upon selecting an
appropriate application for the IC, the Tool requires the user to specify any and all Third
party IP blocks included in the design. Since the Tool performs threat modeling on ICs at
the RTL level written in VHDL only, it considers “Third Party IP blocks” to be any
VHDL files of the design not developed by the user nor any other party completely
trusted by the user. In other words, a Third Party IP block is any file originating from
individuals not directly affiliated with the user or company for which the TRUTH
Analysis Tool is performing threat modeling. This is because the likelihood of malicious
logic contained in one of the VHDL files, however great it may be, is still a realistic
possibility and should be handled as such. In addition, VHDL files originating from the
user or a trusted party are considered completely trustable with no possibility that
malicious logic is contained in the files. These files are not taken into account when
performing risk analysis. Therefore, specifying which files are Third Party IP blocks
allows the Tool to refine its scope to a more specific range of IC components when
performing threat modeling.

Similar to the concept of having different “threat levels” for different applications,
the task of specifying Third Party IP blocks allows for variations to occur. How trustable
a Third Party IP block is varies for each block. Some blocks are (and should be)
considered more trustable than others. For this reason, each Third Party IP block has a

“trustability weight” associated with it. This weight is determined by the user and is
aimed towards providing a more accurate description of the tagged Third Party IP block.
The weight ranges from 0 to 10, with 0 being completely trustable (all VHDL files not
marked as Third Party are automatically given a weight of 0). The determined
trustability weight is then taken into account when performing risk analysis. For this
reason, it is important to remain consistent throughout the process of assigning weights to
Third Party IP blocks. Some suggested questions to help maintain consistency when
assigning trustability weights are as follows:

• What is the reputation of the company from which this VHDL file originated?

• Has there been a history between the user and this company in the past?

• If so, was their work sufficient?

• Have any other companies had privacy issues occur when conducting business
with this company?

It is important to note that these questions are only suggestions to aid the user.
They are aimed towards promoting consistency throughout the process of assigning
trustability weights to Third Party IP blocks. Given an actual situation, one should
develop a unique set of guidelines that is relevant to the target IC and its intended use.

D.2.6 Specifying Assets
The process of assigning assets aims to answer the question “why would an

attacker attack this IC?” This is critical because the ultimate purpose of threat modeling
is to prevent attackers from fulfilling their goals. In order to achieve this, the attackers’
goals must be understood. An asset is an abstract or concrete resource that a system must
protect from misuse by an adversary [3]. It is impossible to have a threat without a
corresponding asset(s) because assets are essentially threat targets. They are used to
describe circuit components based on the components’ contribution to the overall
functionality of the IC. For this reason, components are usually assigned multiple assets
in order to fully describe their use and contribution.

The TRUTH Analysis Tool relies highly upon user interaction throughout the
process of assigning assets. This process is by far the most time consuming and difficult
to comprehend due to its counterintuitive nature, but is vital to the effectiveness of the
Analysis Tool. An inconsistent or inaccurate set of assets leads to an improper set of
attacks to be determined during risk analysis which ultimately renders the Tool as
ineffective. The requirements for assigning assets are rather extensive and are discussed
in detail in the sections that follow. However, it is important to keep in mind that the
process of selecting assets provides necessary information and is essentially the backbone
of the TRUTH Analysis Tool.

D.2.6.1 Asset Descriptions
As stated, assets are used to describe circuit components based on the

component’s contribution to the overall functionality of the IC. In other words, assets are
the means an attacker can use to achieve one of the three possible threats: denial-of-
service, data tampering, or information leakage. Naturally then, there are several
different kinds of assets needed to fully describe a circuit’s components. Shown below
are all the possible assets the user can choose from when describing a component’s

contribution.

• Control – category of assets related to the control and operation of the circuit
o DataSensitive – affecting the control of data flow throughout the circuit

(ex. the system bus)
o OperationSensitive – affecting the overall operation of the circuit (ex.

enable signals)
o TimeSensitive – describes components that affect the timing of a circuit

(ex. clock signals)
• Data – category of assets related to the transfer and manipulation of data

o Memory – affecting memory data transfer and storage (ex. general
registers)

o Computational – affecting data generation and interpretation (ex. ALU,
Data Mux)

o Critical – affecting important data crucial to the circuit (ex. passwords,
encryption keys, etc.)

• LogicBlock – category of assets only available for concurrent assignments,
instances, and processes. This category is based more on a component’s structure
and origin as opposed to its use. It is defined as any circuitry containing logical
gates.

o FSM – logic block behaving like a finite state machine
o Combinational – category of logic blocks that operate concurrently

 ALU – combinational logic block behaving like an ALU
 DECODER – combinational logic block behaving like a decoder
 ENCODER – combinational logic block behaving like an encoder

o Memory – logic block behaving like a memory component
o Other – logic block that is not represented by any other asset in the

"LogicBlock" category
o ThirdPartyIP – logic block that was not developed by the user (i.e., it

came from a Third Party vendor)
o Tristate – logic block behaving like a tri-state buffer
o Sequential – logic block operating sequentially (i.e., process blocks)

It is important to note that the categories of assets are also shown. However,
these categories serve only for organizational purposes and are not among the options the
user can select from.

D.2.6.2 Asset Specification Requirements
The process of assigning assets is completely dependent on the set of Third Party

IP blocks, C, which was explained in a previous section. The contents of C determine
which components of a circuit need to have assets assigned. For this reason, the TRUTH
Analysis Tool requires the set C to be fully developed prior to assigning assets. Each
VHDL file included in C resides in its own location in the circuit structure S. Since the
circuit structure is represented in a hierarchy-type fashion, each file in set C is located on
a different “level” in the circuit design – the farther into the circuit hierarchy, the higher
the level. For example, the top-level design file is always located on level 0, and any file
instantiated in the top-level file is located on level 1. Therefore, since each file in set C is
located at a specific level, the Tool is able to determine the deepest level that a VHDL

file from set C is located. In other words, given a set of Third Party blocks determined by
the user, the Tool is able to find the farthest level into the circuit that one of those blocks
is located. It does this by simply looping through each file in set C and determining
which file is located the farthest into the circuit. That level is labeled as the deepest Third
Party level throughout the remainder of the TRUTH Analysis Tool. In the situation
where a VHDL file is instantiated several times throughout a design, the Tool considers
the level of the file’s farthest instantiation to be the file’s level. Therefore, if a file is
instantiated at level 1 as well as level 2 in a design, then the Tool considers the file’s
level to be level 2 and will handle it as such.

Once the deepest Third Party level has been determined, the Tool requires the
user to specify assets for all components down to that level, but not for the level itself.
This means that all logic blocks (processes, instances, and concurrent assignments) and
signals located before this level need to be assigned the appropriate assets before risk
analysis can be performed. For example, suppose the top-level VHDL file ("file_A.vhd")
instantiates another VHDL file ("file_B.vhd") which then instantiates yet a third VHDL
file ("file_C.vhd"). Therefore, the way the circuit structure S would appear is as follows:

• Level 0 file_A.vhd : top-level

• Level 1 file_B.vhd

• Level 2 file_C.vhd

If, when selecting Third Party IP blocks, the user determined that "file_B.vhd"
was Third Party and no other file, then the user would only be required to specify assets
for all components located before level 1. If, in the same example, the user determined
that "file_C.vhd" was Third Party, then the deepest Third Party level would be level 2
and the user would be required to specify assets for all components in level 0 as well as
level 1.

Furthermore, tagging assets is on an Instance-by-Instance basis. VHDL files can
be instantiated many times throughout a design and, therefore, can represent different
logical components of the design with each instantiation. Each of these instantiations
could handle different types of data based on where in the design it is instantiated which
then would require different assets for each instantiation. For example, a VHDL file
representing a tri-state buffer could be instantiated numerous times through a design.
Each one of those instantiations could represent a different logical component and,
therefore, be handling different types of data. Since the data would be different with each
instantiation, it would contain different assets. For this reason, the user is required to
specify assets for components at every instantiation of a VHDL file as opposed to the
VHDL file itself.

In many situations, designs contain several Third Party IP blocks. These files
could be (and usually are) located on different levels of the circuit. As explained above,
the user is required to specify assets for all components down to the deepest Third Party
level, but not for the level itself. However, in the case that a Third Party VHDL file is
located on a level that isn't the deepest level, the user is not required to specify assets for
all components but rather only for the I/O signals of that file. This is because, since the
file came from a Third Party vendor, the user did not create the file. Therefore, the user
will not have enough knowledge about the components of the file (e.g. internal signals,

process blocks, etc.) to accurately determine the appropriate assets for each component.
The only components of the file the user can accurately and confidently assign assets to
are the I/O signals of the file. For this reason, the user is only required to specify assets
for those signals and no other component.

D.2.6.3 Asset Filtering
 Since most complex IC’s today are not developed solely by the user, it is likely
the user may not know all the assets of every component in the IC. However, assets
provide important characteristics to each component in the circuit design and are heavily
relied upon when performing risk analysis. Therefore, it is crucial to have a complete and
accurate set of assets for each component of the design.

Once the user has specified all the necessary assets for a design, a process known
as asset filtering takes place. This process automatically filters assets through signal
components that are related in order to maximize the accuracy of each signal’s set of
tagged assets. The process, which is shown in Figure 3, filters assets in a depth first
fashion. It begins with the top-level design file and filters assets in two different ways:
vertically through the design hierarchy (Instance Filtering) and laterally through signal
connections (Concurrent Assignment Filtering).

Entity 1

Instance 1 Instance 2

Entity 2 Entity 3

Instance 3

Entity 4

Instance 4

Entity 5

Instance 5

Entity 6

Instance 6

Entity 7

Instance 7

Entity 8

Instance 8

Entity 9

Top-level Design File
Level 0

Level 1

Level 2

Figure 3: The process of filtering assets through a VHDL design hierarchy.

D.2.6.3.1 Instance Filtering
Filtering assets through instances is highly beneficial when inconsistent sets of

assets are tagged to signals connected via an instance. This case arises when a signal
included in the instance declaration contains different assets than the corresponding lower
level signal in the instance’s design file. When this occurs, each signal’s assets are
filtered across the instance and applied to the other design file’s corresponding signal.
The end result, therefore, is that both signals are tagged with the same set of assets. This
ensures there are no inconsistencies in assets when traversing through the instances in the
circuit.

D.2.6.3.2 Concurrent Assignment Filtering
Filtering assets through concurrent assignments is a way to distribute user-tagged

assets from one signal to another. Similar to instance filtering, its goal is to maximize the
accuracy of signal assets before performing risk analysis. There are two types of
concurrent assignment filtering that take place, and both operate in a bit-wise or vector-
wise fashion, depending on the type of operators inside the concurrent assignment
statement. If the concurrent assignment contains at least one mathematical operator, then
the filtering will be in a vector-wise fashion. However, if it only contains logical
operators, then the filtering will be in a bit-wise fashion, where all bits in the vector are
independent of each other. Both types of filtering processes are explained below.

Figure 5: Concurrent Assignment
Filtering – driving signals to driven

signals

Figure 4: Concurrent
Assignment Filtering – driven

signals to driving signals

• Driven signals Driving signals
In this filtering process, assets are transferred from signals being driven to their
driving signal counterparts. The only time this filtering takes place is in a situation
where a signal is being driven by itself and some other signal(s), which is shown
in Figure 4.

The signal clk_good, which represents the
system clock, most likely contains an
accurate set of assets defined by the user.
However, if sig_A is defined internally
within the VHDL file, the user might not
be able to accurately define a complete set
of assets for it. Since sig_A directly
affects clk_good (if sig_A is logic ‘0’, then
the clock can essentially be shut down), it
needs to have all assets assigned to clk_good. Therefore, using this filtering
process, sig_A will be assigned the assets currently assigned to clk_good, thus
ensuring the accuracy of the signal’s assets.

clk_good <= clk_good AND sig_A;

Assets

• Driving signals Driven signals
The other type of concurrent assignment filtering is the one that primarily takes
place in concurrent assignments. Assets from the driving signals are filtered to
the corresponding signals of which they are driving. This type of filtering usually
is performed in a bit-wise fashion, meaning assets of driving signals are filtered to
the exact signal they are driving,
and no other signal.

 Shown in Figure 5 is an example
where this filtering would take
place. Vector A represents a 4-bit
vector being driven by two other 4-
bit vectors, B and C. Since both B
and C directly determine the values
of A, their assets need to be
assigned to A. Therefore, when filtering takes place, all assets from B and C will
be filtered to A. Furthermore, since the assets are filtered in a bit-wise fashion,
each asset from B(0) and C(0) will be filtered to only A(0), B(1) and C(1) will be
filtered to only A(1), and so on. This ensures no assets are incorrectly assigned to
signals.

A(3 DOWNTO 0) <= B(3 DOWNTO 0) OR C(3 DOWNTO 0);

Assets

D.2.7 Risk Analysis
Risk analysis is at the center of the tool’s ability to recognize and categorize

potentially malicious logic. Its accuracy, however, is dependent in large part on properly
assigning assets to components of the circuit structure S. These assignments include both
the user-interactive assignment process as well as asset filtering. Risk analysis operates
on one VHDL file at a time. Therefore, for a multilevel circuit, this process may occur
many times. Using this type of method allows the process to be modular, and the depth
and computational requirements of risk analysis can be modified for individual needs.

There are three main components that comprise risk analysis: path trees, path
analysis, and risk assessment. Each of these components is explained in detail in the
sections that follow, but the general order of operations of the risk analysis process
contains four steps. To begin, it builds a set of path trees from the circuit structure S.
Then, the path analyzer searches each path tree for malicious asset patterns by comparing
them with those contained in the Threat Library. The output from the path analyzer,
which is a list of potential threats, is then sent to the trustability calculator to perform risk
assessment. Finally, after risk assessment, a list of potential attacks, along with
information about the attacks, are displayed to the user.

D.2.7.1 Threat Library
The Threat Library contains a compilation of all known malicious asset patterns.

This Library is designed to be expandable so that, as more knowledge accrues of how
malicious code is implemented in hardware, the Library will be able to accept more
precise and reliable asset patterns. This implies that the Library should be easily editable
by the user. At present, an automated feature for adding asset patterns is not available in
the TRUTH Analysis Tool; however, the user has the freedom to manually update the
Library with a new asset pattern by editing the Library’s text file, ThreatLibrary.lib. It is
crucial to preserve alphabetical order when editing the Library file because failure to do
so may lead to inaccurate results.

In the Library, potential
threats are stored as a sorted list of
malicious asset patterns. In
addition, the Library contains
information such as the type of
attack (Denial-of-Service, Data
Tampering, or Information Leakage)
and a number giving the reliability
of each asset pattern. The more
uniquely the pattern matches an
actual threat, the higher the reliability rating. Once the Library is ready to be used, it is
instantiated into a tree structure, which is shown in Figure 6. Since the Library is sorted,
converting it into a search tree is simple and efficient. First, the Library text file is read
line by line, where each line contains a malicious asset pattern and corresponding data.
The pattern is broken down into individual assets that are inserted into a tree structure, as
shown in the Figure. Since the tree is sorted, it is likely that several lines will contain the
same leftmost assets, i.e., A3 and A2. These form the root of the tree. Progressing to the
right, the tree is traversed along the matching path of assets from the current line of the

Figure 6: Library Asset Tree with an asset
pattern highlighted.

Library’s text file until the line of the text file differs from the tree. When this occurs, a
new branch is added to the tree that stretches to the end of the line. The end result is a
tree structure similar to the one shown in the Figure.

Highlighted in the diagram is a potentially malicious logic pattern. Each pattern
remains distinct within the tree through its leaf node, which in this case is asset A2.
Therefore, there is a one-to-one correspondence between asset patterns and leaf nodes.
Each leaf node in the parsed tree contains the asset pattern’s type and reliability number.
Once the Library text file has been parsed it is ready to be used in path analysis.

D.2.7.2 Path Analysis
Path analysis is a similar process to the malicious code detection of software anti-

virus programs. It begins by manipulating the circuit structure into a searchable graph,
called a path tree, as shown in Figure 6. Next, each path in the graph is divided into a
linear list, called a working list, and the working list’s asset patterns are compared to
those contained in the Threat Library. As matches are found, they are sent to a queue to
be assessed, consolidated, and displayed.

Building a path tree from the parsed circuit begins by identifying all primary
inputs and outputs of each VHDL file. Once these are identified, the method begins at a
primary output of the file, identifies all logic blocks driving the output, and recursively
navigates to each. As the method visits each logic block, it identifies the block’s input
signals, recursively visits them, and then visits their respective driving logic blocks. This
recursive process continues until a primary input is reached. Once a primary input signal
is encountered, it is made a leaf node and the recursion bottoms out. Special care must be
taken when a circuit contains feedback loops in order to avoid infinite looping. Feedback
loops occur when a logic block connects to a signal that connects to another logic block,
which connects to another signal and so on until the original logic block is reached. A
“loop detector” checks for cycles in the path trees and handles feedback loops in the
circuit. It locates the beginning of the loop and returns one level in the recursion to the
next signal outside the loop, thus linking the loop back to its starting logic block. After all
paths from the primary output have been combined into a tree, the method moves on to
the next primary output. Finally, after all primary outputs obtain their respective path
tree, the trees are combined into an array and sent to the search process.

The search process iterates through each path tree and creates a working list for
each path in the tree. The working list, shown in Figure 7, contains the asset patterns that
are to be compared with the Threat Library. As each working list is created, its assets are
linearly compared with the patterns in the Library. Since the threat patterns in the Library
allow for multiple assets to be contained within the same signal or logic block, a multi-
way comparison algorithm is used to determine matches.

Figure 7: Path tree with a working list highlighted.

If a full match is achieved, an attack data structure is created that contains the
logic blocks, the asset pattern, and the library information of the malicious pattern. These
attack structures are passed to the risk assessment method to be assigned a trustability
rating. Due to overlapping of the path trees, a single malicious pattern may be matched
multiple times along the same logic blocks and signals. Therefore, to avoid repetition, the
attacks are consolidated into a list of unique attacks without repetition.

D.2.7.3 Risk Assessment
Risk assessment is the process by which trustability ratings are assigned to each

attack. The trustability rating of an attack represents the likelihood that the attack is real
as opposed to a false positive, and is formed by taking all known information about the
circuit and threat pattern and combining them into an integer number.

The formula for the trustability number calculation is a simple weighted average
using the following variables.

• Threat Pattern Reliability – This is a number that will be incorporated as part of
the Library’s self-learning ability. Each malicious asset pattern in the Library
contains a reliability number which represents the likelihood that the attack or
located malicious asset pattern is real. When self-learning features are
implemented in the Library, this number can be updated whenever its malicious
pattern is used in an attack. If the attack was actual, the number will be increased,
otherwise it will be decreased. Currently, the number represents only a best guess
based on the specificity of the corresponding malicious asset pattern.

• Circuit Application – When the circuit’s intended primary use has been selected, a
set of three numbers, or “threat levels”, is passed along to risk analysis. Each
number corresponds to the likelihood of each type of threat (Denial-of-Service,
Data Tampering, and Information Leakage) occurring, given the circuit’s
application. Each attack, upon creation, is assigned one of the three types of
threats, and the Trustability Calculator matches the threat’s type with the
appropriate number from the circuit’s application.

• Third Party Trustability – Since Third Party vendors can have different degrees of
trustworthiness (some are more trustable than others), each Third Party IP block is
“weight”. This weight is determined by the user and is the user’s best guess as to
the likelihood that an IP vendor might have malicious intent.

After each attack’s trustability number has been calculated, all the ratings are

averaged to give the circuit an overall trustability rating. This rating provides a general
estimate for the cause for concern in deploying the circuit into the intended application.
Once the trustability rating has been calculated, it and all other attack information are
sent to the display window.

D.2.8 Results
Upon completion of risk analysis, specific information about the overall circuit design

is displayed to the user. A screenshot of the displayed information is shown in Figure 8.

Figure 8: The results after performing risk analysis

There are five important components to the display window.

• Threat Level Indicator - The Threat Level Indicator, located in the upper left
portion of the display window, offers the overall circuit reliability to the user. It
informs the user whether the circuit is considered severe, moderate, or low in
terms of threat possibility. It is based on the calculated threat level of the entire
circuit, which is located directly below the indicator.

• Overall Threat Level Number – The Overall Threat Level Number, located
directly below the Threat Level Indicator on the left side of the display, is a
numerical representation of the Indicator. It gives a rating to the overall circuit
within a range from 1 to 10, with 10 representing the highest threat possibility.

• List of Potential Attacks – Shown in the middle of the window is a prioritized

list of potential attacks according to each attack’s trustability number, which was
determined during risk analysis. The user is able to select any potential attack
from the list, and the details of the attack are shown in the “Attack Details”
portion of the display located in the lower right corner of the window.

• Application Details – In the upper right corner of the display window is
information about the application that was selected for the IC. It displays the
name of the selected application as well as the threat levels corresponding to the
application.

• Selected Attack Details – Once an attack has been selected from the list of
potential attacks, details about the attack are displayed in the bottom right corner
of the display window. The information displayed includes the following:

o Type – the type of threat that the attack corresponds to. This takes on one
of three possible values: “DOS” (Denial-of-Service), “DT” (Data
Tampering), or “IL” (Information Leakage).

o Entity – the VHDL file the attack occurs in.

o Trustability Number – an integer value, ranging from 1 to 100,
representing the likelihood that the attack is real as opposed to a false
positive.

o Reliability Number – intended to be a statistical value of the accuracy of
the particular attack over time. Due to the nature of this number, it
becomes more effective with increasing use of the Tool. It is aimed to
answer the question “How many times has this asset pattern been an actual
attack in past circuit designs?”

o 3rd Party IP Block Involved – the Third Party IP block involved in the
attack. Given the organization of the display window, this is always a
logic block found inside the VHDL file that the attack occurs in (i.e., the
VHDL file corresponding to the Entity entry in the display window).

o Affected Elements – the components of the VHDL file that are involved in
the attack. These are the components which contained the asset pattern in
the Threat Library that was matched when performing risk analysis.

o Asset Pattern – the pattern in the Threat Library that was matched when
performing risk analysis

D.2.9 Limitations
At present, the TRUTH Analysis Tool has a limited range of VHDL syntax that it

can accurately support when creating the circuit structure S. Modifications are being
made in order to expand this range, however, the key obstacles reside in the VHDL
parser. Since the circuit structure S provides a foundation for the entire TRUTH Analysis
Tool (the Tool is only as effective as what the accuracy of the circuit structure S allows),
modifications have primarily focused on improving the flexibility of the parser.
Currently, the parser has the following limitations when parsing a VHDL file:

• Case Sensitive – the parser is case sensitive. This means each component needs to
have the same name, down to the case of each letter of the name, throughout the

entire VHDL file. For example, suppose a signal was declared with the name
being "sig_a". Therefore, throughout the entire VHDL file, the signal needs to be
addressed as "sig_a" (not "Sig_a", "SIG_A", etc.). The parser considers "sig_a"
and "sig_A" to be two different signals, and will handle them as such, causing the
Tool to generate an error.

• Constant Declarations – the parser does not recognize constant declarations. Any
constants that are declared are ignored by the parser.

• Constants in Component Instantiations (i.e., Port Map statements) – each
component instantiation cannot contain constants. The term "constant", in this
context, refers to any value that is not declared as a signal and that never changes
value. Two common types of examples include '1' and "0000". Any constants
included in component instantiations will cause an inaccurate circuit structure S to
be created and will generate an error when performing risk analysis.

• Function Declarations – the parser does not recognize function declarations.
These declarations will not cause the Tool to generate an error but rather are
completely ignored by the parser.

• Generate Statements – any generate statements found in a VHDL file are ignored
by the parser. These statements will not cause the Tool to generate an error but
are simply not recognized by the parser.

• Generic Statements – the parser does not recognize generic statements. Any
generic statements are ignored by the parser which, in turn, will cause an
inaccurate circuit structure S to be created. For example, if the statement
“GENERIC (N: INTEGER := 16);” was found in a VHDL file, the parser would
not recognize the meaning behind it. Therefore, whenever ‘N’ was addressed
throughout the file, the parser would only associate it as being a character as
opposed to being an INTEGER of size 16.

D.2.10 Testing
Throughout the development of the TRUTH Analysis Tool, several different

circuit designs were used for testing and experimentation purposes. At first, since the
initial task was to develop the circuit structure S, only one design was used for testing.
This design, which was a simple RISC microprocessor, was used in verifying that the
development of the circuit structure S accurately represented its VHDL counterpart.
Once this phase was close to completion, several other designs were introduced to the
Tool. These included a keyboard controller as well as a 64-bit block cipher, among
others. However, even though these designs were used at different times throughout the
development stages, the RISC microprocessor served as the primary test case throughout
the project’s entirety.

When the Tool’s development neared completion, two examples were developed
to demonstrate the Tool’s functionality. Both examples extended the RISC
microprocessor design. One successfully performed a Denial-of-Service attack while the
other a Data Tampering attack. Upon demonstration, the Tool successfully located both
attacks.

D.3 References
[1] S. Smith and J. Di, “Detecting Malicious Logic Through Structural Checking,” 2007

IEEE Region 5 Technical Conference, Apr. 2007
[2] Grimm, Dr. Christoph and J.W. Goethe. Java VHDL Parser Framework. University of

Frankfurt, Germany. http://www.ti.informatik.uni-frankfurt.de/grimm/hybrid.html.
[3] S. Myagmar, A. Lee, and W. Yurcik, “Threat Modeling as a Basis for Security

Requirements,” Symposium on Requirements Engineering for Information Security
(SREIS) in conjunction with 13th IEEE International Requirements Engineering
Conference (RE) , Paris, France, August 29th, 2005.

http://www.ti.informatik.uni-frankfurt.de/grimm/hybrid.html

